MASTER OF TECHNOLOGY

IN

MECHANICAL ENGINEERING

PROGRAMME SCHEME AND SYLLABUS

(w.e.f. 2018-19)

DEPARTMENT OF MECHANICAL ENGINEERING

GURU JAMBHESWAR UNIVERSITY OF SCIENCE AND TECHNOLOGY, HISAR

DEPARTMENT OF MECHANICAL ENGINEERING GURU JAMBHESHWAR UNIVERSITY OF SCIENCE AND TECHNOLOGY, HISAR M.Tech. (Mechanical Engineering) (w.e.f. 2018-2019)

FIRST SEMESTER

Course No.	Title	L	Р	Cr.
ME-751	Advanced Mechanics of Solids	3	0	3.0
ME-753	Advanced Engineering Materials	4	0	4.0
ME-755	Automation in Manufacturing	4	0	4.0
ME-757	CNC Technology and Programming	3	0	3.0
ME-759	Advanced Heat and Mass Transfer	4	0	4.0
ME-761	Advanced Mechanics of Solids Lab	0	4	2.0
ME-763	CNC Technology and Programming Lab	0	4	2.0
	Audit Course-I (any one from attached list of audit-I courses)		0	0.0
	Total	20	08	22.0

SECOND SEMESTER

Course No.	Title	L	P	Cr.
	Programme Elective -I(any one from attached list of			
	Programme elective-I courses)	4	0	4.0
ME-752	Advanced Machine Design	4	0	4.0
ME-754	ME-754 Computer Aided Design and		0	3.0
	Manufacturing			
ME-756	Finite Element Methods	3	0	3.0
ME-758	Tool Engineering	4	0	4.0
ME-760	Computer Aided Design and	0	4	2.0
	Manufacturing Lab			
ME-762	Finite Element Methods Lab	0	4	2.0
	Audit Course-II(any one from attached list of audit-II courses)		0	0.0
	Total	20	08	22.0

THIRD SEMESTER

Course No.	Title	L	Р	Cr.
	Programme Elective –II(any one from attached list of			
	Programme elective-II courses)	4	0	4.0
	Open Elective(any one from attached list of Open elective			
	courses offered by other departments)	3	0	3.0
ME-765	E-765 Tribology		0	3.0
ME-767	Tribology Lab	0	4	2.0
ME-769	Seminar	0	4	2.0
ME-771	Thesis (starts)	0	6	3.0
	Total	10	14	17.0

FOURTH SEMESTER

Course No.	Title	L	Р	Cr.
ME-772	Thesis		18	9.0

Total Credits: 70.0

Audit Courses-I

Course No.	Title	L	Р	Credit
AC01	English for research paper writing	2	0	0.0
AC02	Disaster Management	2	0	0.0
AC04	Value Education	2	0	0.0
AC07	Stress Management by Yoga	2	0	0.0

Audit Courses-II

Course No.	Title	L	Р	Credit
AC03	Sanskrit for Technical Knowledge	2	0	0.0
AC05	Constitution of India	2	0	0.0
AC06	Pedagogy Studies	2	0	0.0
AC08	Personality Development through Life	2	0	0.0
	Enlightenment Skills			

LIST OF PROGRAMME ELECTIVES –I

Course No.	Title	L	Р	Cr.
ME-732	Robotics	4	0	4.0
ME-734	Instrumentation and Measuring Systems	4	0	4.0
ME-736	Flexible Manufacturing Systems	4	0	4.0
ME-738	Mechatronics	4	0	4.0

LIST OF PROGRAMME ELECTIVES -II

Course No.	Title	L	Р	Cr.
ME-731	Optimal design of thermal systems	4	0	4.0
ME-733	Computational fluid dynamics	4	0	4.0
ME-735	Advanced Thermodynamics	4	0	4.0
ME-737	Heat exchanger analysis and design	4	0	4.0

LIST OF OPEN ELECTIVES

Course No.	Title	L	Р	Credit
30E01	Business Analytics	3	0	3.0
3OE02	Industrial Safety	3	0	3.0
3OE03	Operations Research	3	0	3.0
30E04	Cost Management of Engineering Projects	3	0	3.0
30E05	Composite Materials	3	0	3.0
30E06	Waste of Energy	3	0	3.0
3OE07	Advancements in Communication System	3	0	3.0
3OE08	Introduction to Soft Computing Techniques	3	0	3.0
30E09	Advanced Printing Technology	3	0	3.0
30E10	Computer Aided Design & Manufacturing	3	0	3.0
30E11	Food safety and quality assurance	3	0	3.0

				IECHANICS OF SOLIDS	
L	Т	Р	Internal Marks	External Marks	Credi
3	0	0	30	70	3.
•	To understa	nd the conc	ants of strass and strain	strength and stiffness, deformation a	nd displacement
•	and energy t		epis of stress and strain,	strength and stypness, dejormation a	ia aispiacemeni
•	0.		r of the solid bodies sub	jected to various types of loading.	
•	To design m	achine elem	ents using theories of de	eformable bodies.	
Un	it I				
3-I	O dimensional	stress and	strain: Analysis of Stre	esses and Strains in rectangular and p	olar coordinates:
				bal strains, 3D Mohr's Circle, Octa	
			stress, Differential equ	ations of equilibrium, Plane stress a	and plane strain
	npatibility co				
				id, bending, shear and torsion, Maxy	well's reciproca
		iano's theoi	em, analysis of helical s	springs by energy method.	
	it II	andire - Ol		with one only of any start the start	en fon ov-
				with one axis of symmetry, shear cent ms subjected to unsymmetrical bendin	
				Discs of uniform thickness, Discs of U	
	tating Cylinde			vises of uniform unexness, Dises of en	intorin Strength,
_	it III				
		imns: Beam	 columns single concen	trated load, number of concentrated l	oads contionous
			uples at both ends triang		
		-		e and moment relations, differential	equation of plate
				rectangular plates, axis symmetric	
	tes.	-			
Un	it IV				
				ite, semi infinite, finite beams classific	cation of beams.
	**		spaced elastic elements.		
				n or compression members. Stresses	in a plate with a
_		<u>^</u>	small semi circular gro	oves.	
	urse Outcom				
	dents would l				1. 1
•		-	s of stress and strain, str	rength and stiffness, deformation and a	displacement
•	and energy t		f the solid hadies subject	tad to various types of loading	
•	-	-		ted to various types of loading.	
• Do	oks recomme		ts using theories of defor	muble boules.	
			Machanica of Solida"	Tata MaCraw Hill Education 2010	
•				Tata McGraw-Hill Education, 2010.	
•			f Material", Macmillan, of Materials", Khanna F		
•	•		es of Solid", Pearson Pub		
•				, Prentice Hall of India, 2006	
	-	-	-	East-West Press Pvt. Ltd., New Delh	; 2012
• No		s, suengi			1, 2012.
		oraminatio	n nino quastions are	to be set by the examiner Ausstia	n No. 1 will h
			-	to be set by the examiner. Question	
		ouseu Oll		tour units) It will contain seven sk	ωπ αποινεί ίνμε
	ostions oach			four units). It will contain seven short on site of the seven short on the seven by setting two que	
qu		of two mark	s. Rest of the eight ques	four units). It will contain seven sh tions is to be given by setting two que uired to attempt other four questions	estions from each

T	_			GINEERING MATERIALS	
		P	Internal Marks	External Marks	Credi
4 Com	$\frac{0}{rso}$	0	30	70	4.
		ojectives	ificance of material science	and its role in manufacturing.	
		-		ing materials (metals, polymers, ce	ramios
		sites, Semi-c		ing materials (metals, polymers, ce	rumics,
	-			facturing techniques, properties an	d applications.
			riate plastics and polymers		
Unit		<u> </u>	· · ·		
				minium and its Alloys, Nickel and d its Alloys, Cobalt and its Alloys, I	
Unit	II				
Steel	ls, Sta	ainless Stee		Cast Irons, Low Alloy and High Time Temperature Transformation rface-Hardening	
Unit	III				
Ther Mate Com	erials, posite	stics, Therm Glass, Ceme s, Ceramic	osets, Elastomers, Types a ents, Refractories and Adva	ner Materials (Introduction), I and Applications of Ceramics, Pro- nced Ceramics, Structure of Compo- rmer Matrix Composites, Fiberg nposites	perties of Ceramics osites, Metal Matrix
Unit	IV				
				Memory Phenomenon and Alloys Metals for Nuclear energy, Sound 1	
Proj	ect				
selec	cted in	consultatio		l to the course contents. The topic of . . The project report will be subn the course coordinator.	
Cou	rse Ou	itcomes			
Stud	ents w	ould be able	to		
• ι	unders	tand signific	ance of material science an	d its role in manufacturing.	
2	Semi-c	onductor).		materials (metals, polymers, ceran	-
			1 0	turing techniques, properties and a	pplications.
	-		te plastics and polymers for	different applications.	
		ommended	· · · · · · · · · · · · · · · · · · ·		·
				akash, "Material Science and Engin	neeing", Tata
			ation (P) Ltd, 2013.	, R., "Callister's Material Science a	nd Engineering"
		India (P) Lto		, K., Callister's Material Science a	ind Engliteering,
	•			Structures", Chapman and Hall, 199	2.
		-	lection of Engineering Mate	-	
			e e	oplications", Wiley Eastern Ltd, 19	93.
Note	9				
comp ques of th	pulsor tions, e four	y and based each of two	on the entire syllabus (al marks. Rest of the eight que syllabus. A candidate is rea	to be set by the examiner. Que. l four units). It will contain sever stions is to be given by setting two quired to attempt other four question	n short answer type questions from each
				Hisar M Tool (Machanical Engineer	

ME-755: AUTOMATION IN MANUFACTURING							
L	T P	Internal Marks	External Marks	Credi			
4	0 0	30	70	4.0			
•	automating proce use the machine	esses in manufacturing, demons	pneumatic and electro-pneumatic strate problem-solving skills in auto explore the use of different sensor & hydraulic circuits.	mation and safely			
Un	nit I						
Mo	odern development		Basic Concepts, Types of automation and its effect on global competiti				
Un	it II						
hyd syr cyl dir	draulics/pneumatic nbols for them, C linders - construct ection control, Ser	es, Electro-pneumatic systems, Construction and performance tion, design and mounting, Hy rvo valves and simple servo sy	neumatic controls and devices, Fluid power control elements and of fluid power generators, Hydra ydraulic & pneumatic valves for stems with mechanical feedback, S umatic & electro-pneumatic circuits	standard graphical ulic & pneumatic pressure, Flow & olenoid, Different			
Un	nit III						
Cla Ma pro	assifications of Dif aterials for RP: P ocesses, the advant	ferent RP Techniques.	inciples of RP, Steps in RP, Ad tals, Selection criterions for mate t types of materials.	-			
3	it IV			· .1 1 · .1			
but As	ffer storage, Group	technology and flexible manuf	lysis of automated transfer lines, facturing system. Assembly line balancing, Performan				
Pre	oject Work						
Stu sel	udents are required fected in consultat		to the course contents. The topic of The project report will be submit he course coordinator.				
	ourse Outcomes						
Stu •	understand princ and manufacturi	oncepts of automation theory an iples, methods, and hardware/s ng of discrete parts.	nd its applications in various fields o oftware tools used in modern comp involved in optimizing production s	uterized design			
Bo	oks recommende	d					
•	Groover, M. P., ' Prentice Hall, 20 Boothroyd, G., ''	'Automation, Production system 05. Assembly Automation and Proc Dewhurst, P. and Knight, W., "P	ns and Computer Integrated Manufa luct Design", 2nd Ed., Marcel Dekk roduct Design for Manufacture and	er, 1992.			

Note

ME-757 CNC TECHNOLOGY AND PROGRAMMING

		IE-757 CNC IECHNOLO	GY AND PROGRAMMING	
L	T P	Internal Marks	External Marks	Credit
3	0 0	30	70	3.0
	rse Objectives			
• 7	To understand fun	damentals of the CNC technol	ogy.	
• 7	To understand the	programming methods in CN	C machines.	
Unit	Ι			
	A	•	rds, Coordinate systems, CNC mac systems, Sensors and Feedback dev	
Unit	II			
Prog cycle	ramming features es, Branching logi	: Tool length and radius comp	aratory functions, Miscellaneous fu ensation, Tool nose radius compen- ng etc. Fundamentals and programm.	sation, Canned
Unit	III			
struc comi CAD	ture, Geometry of mands, Repetitive	commands, Motion Command Programming Complete part	ly Programmed Tools (APT) lat ds, Post Processor Commands, C program, Problems. VinNC, ELCAM and ELPULS for	ompilation control
Unit	<u> </u>			
CNC	C Tooling: Cuttin		ristics, Turning tool geometry, T Automatic tool changers, Work ho	
Cou	rse Outcomes			
• ι	ents will be able t understand the ba vrite CNC progra	sics of CNC machines.		
	ks recommended			
 J H M H M H Z 	Ion S. Stenerson Prentice Hall, 3rd Mattson Mike, "C Fitzpatrick, "Macl Michael J. Peterso Publishing Platfor Peter Smid, "CNC 2013.	Kelly Curran, "Computer Medition 2007. NC Programming: Principles of nining and CNC Technology", n, "CNC Programming: Basic m, 1 st edition 2008.	Numerical Control: Operation and & Applications", Cengage learning McGraw-Hill Higher Education, 3 s & Tutorial Textbook", Create Spa ler for Programmers", Industrial Pr	, 1 st edition 2013. rd edition 2013. ace Independent
Note	•			
comp quest of th	pulsory and base tions, each of two	d on the entire syllabus (all	to be set by the examiner. Quest four units). It will contain seven ions is to be given by setting two q uired to attempt other four auestion	short answer type uestions from each

		Μ	E-759 ADVANCED HEA	AT AND MASS TRANSFER	
L	Т	Р	Internal Marks	External Marks	Credi
4	0	0	30	70	4.
Co	ourse Obje	ectives			
•			pasic concepts of heat transf		
•			extended surfaces and the pr		
•	To under	stand the o	concept of phase change hea	t transfer, principles of radiation an	d mass transfer.
Un	it I				
ini sur	tial and bo faces	undary co	nditions, variable thermal co	fer: Conduction: General heat Cond nductivity, Internal distributed heat	sources, Extended
				-Heisler charts-semi infinite solid-us	se of shape factors
		1-2D transi	ent heat conduction-product	solutions.	
	hit II	.1			. 1 . 1 .
pro	oblems-imp	plicit and e	explicit methods.	D steady state and simple transien	
Free and Forced Convection: Approximate analysis on laminar free convective heat transfer-boussinesque approximation-different geometries-combined, equations of fluid flow-concepts of continuity, momentum equations-derivation of energy equation-methods to determine heat transfer coefficient: Analytical methods-dimensional analysis and concept of exact solution. Approximate method-integral analysis.					
Un	it III				
typ &t hea to Bo	bes of flow hermal ent at transfer variation g iling and o	w-constant try lengths coefficient cometries condensati	wall temperature and co ; use of empirical correlation for different velocity and to for laminar and turbulent flo	ns-Nusselts theory of film condensati	ons-hydrodynamic nethod for laminar empirical relations
<u> </u>	it IV		fretations of min condensati	on for unrefent geometries.	
Ra abs Ma	diation hea sorbing me	edia, specu er: Concep	lar surfaces, gas radiation-ra ts of mass transfer-diffusion	rey, non-grey bodies, with transmitti diation from flames. & convective mass transfer analog	
Pr	oject Wor	k			
sel	ected in c	onsultatio		to the course contents. The topic of The project report will be submit the course coordinator.	
Co	ourse Outc	comes			
•	Students transient		e to understand and can and	lyzeheat conduction problems under	r steady and
•	Student w boiling a	vill be to u nd conden	sation and will be able to so	omena associated with free and forc lve problems based on them.	
•	Each stud	dent under	stands the physical mechani	sms involved in radiation heat and n	nass transfer.
Bo	oks recom	mended			
•	Incropera Bergman Wiley &	a F., & De T. L., Inc Sons, 201	Witt D, "Fundamentals of he ropera F. P., & Lavine A. S. 1.	of heat transfer", Cengage learning, 2 at and mass transfer", John Wiley 50 "Fundamentals of heat and mass tra Transfer", Narosa Publications, 2010	th edition 2002. ansfer". John

- Y.A Cengel, "Heat Transfer: A Practical Approach", TMH India, 2013.
- KV Narayanan and B Kakshmikutty, "Mass Transfer: Theory and Applications", CBS Publishers and Distributors Pvt. Ltd, 2014.

Note

	ME-761 ADVANCED MECHANICS OF SOLIDS LAB						
L	Т	Р	Internal Marks	External Marks	Credit		
0	0	4	30	70	2.0		
Co	ourse Obj	ectives					
•	To predic	ct the behavi	or of the solid bodies subjec	ted to various types of loading.			
Li	List of experiments						
1.	strain cu	rves for duc		ests for ductile and brittle mater brify failure criterions for ductile			
2.	To perfo	orm torsion t		aterials, verify failure criterions f any.	for ductile and brittle		
3.	•						
4.	4. To understand principle of fatigue testing machine in a reverse loading manner and to find the endurance limit of the given specimen on Fatigue Testing Machine. To construct an S-N curve (stress level - number of cycles to failure) of the test samples provided and interpret the obtained						
5.	experimental results and use them as a tool for material selection in engineering applications.5. To prepare a given specimen (mild steel) for micro structural examination. To observe different micro-structures like ferrite, perlite, cementite, austenite, bainite and martensite and study their properties.						
Co	ourse Out	comes					
Sti		l be able to					
•	• predict the behaviour of the solid bodies subjected to various types of loading.						
•							
•	select m	aterial in en	gineering applications based	d upon experimental data.			
No	ote						
				linator. At the end of the semeste b be appointed by the University.			

	ME-763 CNC TECHNOLOGY AND PROGRAMMING LAB							
L	Т	Р	Internal Marks	External Marks	Credit			
0	0	4	30	70	2.0			
Co	urse Obje	ectives						
•	To under	stand and o	perate CNC machines.					
•	To create	e manual pa	rt programming on CNC ma	chines.				
Lis	List of Experiments							
1.	To perfor machine		up, startup, and safely featur	es in CNC turning, machining	and wire-cut EDM			
2.				eeds, and other parameters of (ording to tool and work materia				
3.	To set up	cutting too		n CNC turning, machining and				
4.			t programs for least machini cut EDM machine tools.	ng time and simulate the tool-	path on CNC turning,			
5.	To operate CNC turning center, machining center and wire-cut EDM. Load a program and execute actual machining.							
Co	Course Outcomes							
Stu	Students will be able to							
•	• manually write, edit, debug, and use CNC programs to produce products.							
No	Note							
			-	inator. At the end of the semest be appointed by the Universit				

ME-752 ADVANCED MACHINE DESIGN					
L	Т	Р	Internal Marks	External Marks	Credit
4	0	0	30	70	4.0
Course	e Objecti	ves			
			ncept of design and its consideration	ns for manufacturing, assembly, c	aesthetics,
Unit I	zonomics,	jatigue c	and creep.		
1	Dhilogon	hru Daai	an nuccess, design models design nh	acces muchuat design strategies m	no du ot
			gn process, design models,design ph ification, need analysis, concept gen		
			rations: Frequency distribution, Hist		
			surement of central tendency and di		
			d natural tolerances		
Unit I	[
Design	for Man	ifacture a	and Assembly: General consideration	ons in design for casting, forging,	machining,
powde	r metallur	gy and w	elding, Design considerations for as	ssembly.	
Unit I	I				
•			l ergonomics: Aesthetics considerat		
			e -shape, features, materials and fi		
			orkspace design, hand tool design,	human engineering consideration	ons-Relation
			nd environmental factors,		
			a: Objective of optimum design, Joh rmal specification of simple machine		ign (MOD),
Unit I	-	with no	mai specification of simple machine	e elements.	
5		in and cr	eep: Static failure theories, Fatigue	machanisms Design for fatigue	strength and
			ess variation, design for fluctuating		
			ure theories, cumulative fatigue dan		
			es, yielding and transformation.		
Projec	t work				
			carry out a project related to the co		
			with course coordinator. The pro-		the end of
			will be done internally by the cours	e coordinator.	
	e Outcom				
	ts would l				
	· •	8	nufacturing, assembly, aesthetics, et	rgonomics, fatigue and creep.	
	recomme				
			nd Keith J Nisbett, "Shigley's Mech	nanical Engineering Design", McC	Graw-Hill
			th edition, 2014.		rd
• Bh edi	andari V. ition, 2010	, "Design).	n of machine Elements", McGraw H	ill Education (India) Private Limi	ited, 3 rd
• Wi	illiam C. (Orthwein	, "Machine Component Design: v. 1	& 2", Jaico Publishing House, N	lew Ed
	ition, 200				· · · · · · · · · · · · · · · · · · ·
• Ro 5^{th}	bert C. Ju dedition, 2	vinall an 2011.	d Kurt M. Marshek, "Fundamentals	of Machine Components Design	", Wiley,
	ll A. S., F haum, 198		to A. R. and Laughlin H. G, "Theory	y and problems of Machine Desig	, n",
• Jol	nnson R. (C, "Mech	anical Design Synthesis with optim	ization applications", Van Nostra	nd
			1 st edition 1971.	1002	
			for Manufacture", Pittman Publicat		1.1 1072
			Engineering Design – A systemat al Engineering, GJUS&T, Hisar, M.T.	**	

Department of Mechanical Engineering, GJUS&T, Hisar, M.Tech. (Mechanical Engineering), w.e.f. 2018-19

Blackie & Son Ltd, 1972.

- James G. Bralla, "Design for Manufacturability Handbook", McGraw Hill Co., 2 edition 1998. •
- K. G Swift, "Knowledge based design for manufacture", Kogan Page Ltd., 1987. Penny R.K. And Marriott D. L., "Design for Creep", 2nd edition 1995. •
- •

Note

ME-754 COMPUTER AIDED DESIGN AND MANUFACTURING L Т Р Internal Marks **External Marks** Credit 3 0 0 30 70 3.0 **Course Objectives** To understand the basic parametric fundamentals that are used to create and manipulate geometric models. Unit I Introduction: Definition and scope of CAD/CAM, Introduction to design process and role of computers in the design process. Transformations: 2D and 3D transformations. Unit II Curves and Surfaces: Analytical, Synthetic curves with advantages, Disadvantages, Comparison with parametric curves, Geometric modeling curves and surfaces, Representation, Wire frame models, Parametric representations, Parametric curves and surfaces. Solid modeling: Solid models, Fundamentals of solid modeling, Different solid representation schemes, Half -spaces, Boundary representation (B-rep), Constructive solid geometry (CSG). Unit III CAD/CAM Data Exchange Formats: Types of file formats & their exchange, Graphics standards. Simulation: Need of simulation, concept of a system, Model and its purpose, Types of simulation approaches-Event Scheduling Approach (ESA), Activity Scanning Approach (ASA), Process Interaction Approach (PI A), Steps in a simulation study, advantage s disadvantages and pitfalls of simulation .Simulation Languages. **Unit IV** Computer Aided Manufacturing : CNC machine tools, principle of operation of CNC, Steps in manufacturing, construction features including structure and drives, Direct numerical control (DNC) and its application, advantages and limitations of CNC systems. Computer Assisted Part Programming: CNC part programming, axes of CNC machines, manual part programming using G code, use of subroutines, computer aided part programming using APT or any other language, Automatic NC program generation from CAD models, Machining of surfaces, Mould, Casting and Die design and manufacture using CAD/CAM software. **Course Outcomes** Students will be able to • create the different wireframe and surface primitives using parametric modeling. create the different solid primitives using the different representation schemes. • manipulate the created wireframe, surface and solid models. • **Books recommended** Zeid, I., "CAD/CAM", McGraw Hill, 2008. Rogers, D. F. and Adams, J. A., "Mathematical Elements for Computer Graphics", McGraw Hill 2nd edition. 1989. Radhakrishnan, P. and Kothandaraman, C. P., "Computer Graphics & Design", Dhanpat Rai • Publication", 2nd edition, 2005. Krishnamoorathy, C. S. and Rajeev, J. S., "Computer Aided Design (Software and Analysis Tools)", Narosa Publication House, 2nd edition, 2005. Note In the semester examination, nine questions are to be set by the examiner. Question No. 1 will be compulsory and based on the entire syllabus (all four units). It will contain seven short answer type

questions, each of two marks. Rest of the eight questions is to be given by setting two questions from each of the four units of the syllabus. A candidate is required to attempt other four questions by selecting one from each of the four units.

Department of Mechanical Engineering, GJUS&T, Hisar, M.Tech. (Mechanical Engineering), w.e.f. 2018-19

SECOND SEMESTER

	ME-756 FINITE ELEMENT METHODS					
L	Т	Р	Internal Marks	External Marks	Credit	
3	0	0	30	70	3.0	
Cou	rse Obje	ctives				
		p the know cal Enginee		pply Finite Element Methods to pr	oblems in	
Unit		0	0			
desci finite progr	Introduction: Basic concepts, Historical background, general applicability of the method, general description of FEM, one dimensional problems with linear & cubic interpolation model, derivation of finite element equations using direct approach, comparison with other methods commercial finite element program packages. Discretization of domain: introduction, basic element shapes, discretization process, node numbering					
			generation	· ·	C C	
Unit	Π					
multi inter	Interpolation Models: Introduction, polynomial form of interpolation functions, simplex, complex and multiplex elements, interpolation polynomial in terms of nodal degree of freedom, selection of order of interpolation polynomial, convergence requirements, linear interpolation polynomial in terms of global coordinates, interpolation polynomial for vector quantities, linear interpolation polynomial in terms of local coordinates, integration of functions of natural coordinates, patch test					
		1 T		ing titles and a set dimension	-1 -1	
order Deriv elem equa	Higher order and Isoparametric elements: Introduction, higher order one dimensional elements, higher order elements in terms of natural coordinates, Isoparametric elements Derivation of element matrices and vectors by using direct and weighted residual approach, assembly of element matrices and vector and derivation of system equations, Numerical solution of finite element equations by using Gaussian elimination method.					
Unit						
dime Appl lubri Appl	Applications in heat transfer: Finite element solution of one-dimensional, two-dimensional and three- dimensional steady state heat conduction problems by using Galerkin approach. Applications in fluid mechanics: Finite element solution of incompressible and compressible fluid film lubrication problems by using Galerkin approach. Applications in solid mechanics: Finite element solution of three-dimensional elasticity problems by					
	rse Outc	n approach				
-			2 to			
• se el	 The students will be able to select the different types of element, generate mesh, construct element stiffness matrices, assemble element stiffness matrices, impose boundary conditions, solve the equations and interpret the results for different problems. 					
• ap	oply Fini	te Element	Methods to 1D, 2D, 3D prac	ctical engineering problems.		
Bool	Books recommended					
• 0	 Books recommended Fish, J., and Belytschko, T., "A First Course in Finite Elements", 1st Ed., John Wiley and Sons (2007) Chaskalovic J., "Finite Element Methods for Engineering Sciences: Theoretical Approach and Problem Solving Techniques", 1st Ed., Springer (2008) Huebner K.H., Dewhirst, D. L., Smith, D. E., and Byrom, T. G., "The Finite Element Method for Engineers", 4th Ed., Wiley(2008) De G.G. (The Finite Element Method in Engineering Sciences and Main Element Method for Engineers", 4th Ed., Wiley(2008) 					

• Zohdi T.I., "A Finite Element Primer for Beginners: The Basics" Springer, (2014) Note

SECOND SEMESTER

ME-758 TOOL ENGINEERING					
L	Т	Р	Internal Marks	External Marks	Credit
4	0	0	30	70	4.0
•			nechanics of various advance n, effect of process parameter	ed machining processes including rs on the output responses.	the material
•			wledge on principle involved e process capability.	d, accuracy involved, tooling requ	irement and
•	To develop	p knowled	ge and skills design of variou	us jigs and fixtures to increase the	production rate.
Un	it I				
Sp Nit	eed Steels,	Cast-Co con-Nitrid	balt Alloys, Carbides, Coat	Properties, Carbon and Medium- ted Tools, Alumina-Based Cera nond, Reinforced Tool Mater	mics, Cubic Boron
Co De	nsideration sign of Dril	s for Me		chanics and Geometry of Chip le Point Cutting Tools, Design esign of Taps	
_	it II		· · · · · · · · · · · · · · · · · · ·		
Me Wo and	easurement, ork Holding d Devices, (Types of Devices:	Gages, Gage Design, Gage	erances, Geometrical Tolerances Folerances, Material for Gages k Holding Devices, Location: Prin vices	-
Un	it III				
Co De	nsideration sign of Fiz	s in the D stures: Fi	esign of Drill Jigs, Drill Bush	Drill Jigs, Chip Formation in nings, Drill Jigs, and Modern Man bes of Fixtures, Milling Fixtures es	ufacturing
Un	it IV				
Op Sir To	erations, V ngle and Do ol Design	ariables t uble Acti for Nume	nat Affect Metal Flow during on Draw Dies. prically Controlled Machine	awing Dies, Bending Dies, Forn g Drawing, Determining Blank S Tools: Fixture Design for Nun l, Tool-Holding Methods for Num	ze, Drawing Force, herically Controlled
	oject	-,			
Stu sel	idents are r ected in co	onsultation		to the course contents. The topic of The project report will be subm he course coordinator.	
Co	urse Outco	omes			
	idents would		to		
•			hanics of various advanced n 1, effect of process parameter	nachining processes including the rs on the output responses.	material
•	knowledge	e about th	e process capability.	ccuracy involved, tooling require	
•	develop kr	10wledge	and skills design of various j	igs and fixtures to increase the pr	oduction rate.
Bo	oks Recom	mended			
•	Mehta, N. (India) Pri			ting Tools, Jigs & Fixtures", McC	Braw Hill Education
•	Cyril Don 2012.	aldson, G	eorge H LeCain, Goold V.C.	, Joyjeet Ghose , "Tool Design", 7	Tata-McGraw Hill,

Department of Mechanical Engineering, GJUS&T, Hisar, M.Tech. (Mechanical Engineering), w.e.f. 2018-19

- Jeff Lantrip, John G. Nee, David Alkire Smith, "Fundamentals of Tool Design", Society of Manufacturing Engineers, 2003.
- Jones E.J.H., Town H.C., "Production Engineering: Jig and Tool Design", Butterworth and Co (Publishers) Ltd, 2009.
- Maurice Henry Albert Kempster, "An Introduction to Jig and Tool Design', Maurice Henry Albert Kempster, English Universities Press, 1964.

Note

ME-760 COMPUTER AIDED DESIGN AND MANUFACTURING LAB Ρ L Т **Internal Marks External Marks** Credit 0 0 4 30 70 2.0 **Course Objectives** *To use professional CAD software(s) for modeling, analysis and computer assisted manufacturing.* • • To learn advance machining features on CNC machines. **List of Experiments** Practicing the part modeling, assembly and simulation operations on available CAD package(s). 1. Generating automatic Cutter Location (CL) data from CAD models and post processing for 2. machining on CNC machines. Producing complex cylindrical shaped pieces on CNC machining center with the help of 4thaxis. 3. 3-D virtual machining on offline CNC machining center. 4. 5. Creating radial and axial surface profiles by using C-axis and driven tools on CNC turning center. Manufacturing parts on CNC machining center with WinNC. 6. 7. Machining complex parts on CNC wire-cut EDM with ELCAM and ELPULS. 8. Fabrication of 3-D physical part using additive manufacturing technology from 3-D CAD model. **Course Outcomes** Students will be able to • use parametric CAD software(s) for geometric modeling, analysis and computer assisted manufacturing of mechanical components. manually write, edit, debug, and use CNC programs to produce complex profiles on CNC machines. Note The internal evaluation will be done by course coordinator. At the end of the semester, viva-voce will be conducted both by internal and external examiners to be appointed by the University.

SECOND SEMESTER

			ME-762 FINITE ELEN	IENT METHODS LAB			
L	Т	Р	Internal Marks	External Marks	Credit		
0	0	4	30	70	2.0		
Co	urse Obj	ectives					
•				methods and to solve practical rogram and by using FEM softw	vare		
Li	st of Expe	eriments					
1.	Introduc	tion to basi	concepts of programming for	or FEM problems. To develop the	he computer		
	program	for the add	ition, multiplication and inve	rse of matrices.			
2.	Finite el	ement form	ulation and analysis of one d	imensional problem (direct appr	oach) by		
	developing computer programme.						
3.	Finite el	ement form	ulation and analysis of one d	imensional problem (Galerkin a	pproach) by		
	developi	ing compute	er programme.				
4.	The mod	leling and a	nalysis two dimensional prob	olems usingfinite element softwa	are (ANSYS).		
5.	The mod	leling and a	nalysis three dimensional pro	blems usingfinite element softw	vare (ANSYS).		
Co	ourse Out	comes					
Stı	idents will	l be able to					
٠	develop the computer program for the <i>analysis and solution of practical engineering problems</i> .						
•	analyze	and solve th	e practical engineering prob	lems by using the FEM softward	e (ANSYS).		
No	te						
				inator. At the end of the semesters to be appointed by the University			

PROGRAMME ELECTIVE - I

		ME-732	2 ROBOTICS	
L T	Р	Internal Marks	External Marks	Credit
0	0	30	70	4.0
Course O	bjectives			
design and w	a spects both		logies, applications, design specific f industrial robotics/ manipulator a botic applications	
U nit I				
productivi Robot Ele	ty, Robot class ements and C	ifications and applications. ontrol: Manipulators, Driv	spects in robot applications with es, Sensors, End Effectors, Confi Feedback System, Digital Control.	
Robot Kin		ogeneous co-ordinates and co action to Lagrangian and Ne	o-ordinate transformations, Forward wton-Euler formulations.	and inverse kinematics.
Unit III				
Linear and input mult	i output contro	Control of Manipulators: c l systems, Cartesian based c lators: hybrid position/force		ollowing control, multi
Unit IV				
robotics en	nvironment, W ogramming: Ro	ork cell design and control,	sidering velocity and acceleration. W Robot vision, Introduction to image p ufacturing and Other Applications,	processing.
Project W	Vork			
Students d selected in	are required to consultation v		ed to the course contents. The topic e project report will be submitted at a dinator.	
Course O				
Students w Work need u cell co indust	vould be able to individually an using mechanic ontroller and it rial environme	nd/or with an interdisciplina cal kinematic structure along ts programming, for enablin nt.	ry team for the purpose of manipula g with the understanding of requiren ng robotic manipulator to work in a	nents from robotic work
• Under	stand, create a	and demonstrate the technica	<i>ul reports for robotic automation.</i>	
	commended			
Hill, 1 • Schill	987. ing, R.J., "Fund	damentals of Robotics Analy	ootics: Control, Sensing, Vision, and vsis and Control", Prentice Hall of In and Control", prentice Hall, 2004.	
		and Flexible Automation",		
	S.K., "Introduc	ction to Robotics", McGraw	Hill, 2008.	
• Note				.11.1 1
based on t Rest of the	he entire syllat e eight question	bus (all four units). It will co ns is to be given by setting	e set by the examiner. Question No. 1 ontain seven short answer type quest two questions from each of the four by selecting one from each of the fou	ions, each of two marks units of the syllabus. A

ME-734 INSTUMENTATION AND MESURING SYSTEMS

L	Т	Р	Internal Marks	External Marks	Credit			
4	0	0	30	70	4.0			
Con	Course Objectives							

Course Objectives

• The course is intended to give students a thorough understanding of a measuring system, different transduction principles, error analysis response etc. and various other issues related to instrumentation system.

Unit I

Generalized Configuration of Measuring System: Functional elements of a basic measuring system; different types of measurands, description of functional elements. Input-output configuration of a measuring system interfering and modifying inputs; methods for correction for interfering and modifying inputs.

Characteristics of Instruments: Objective of studying the characteristics of the instruments. Static characteristics accuracy precision, error, sensitivity, hysterisis, threshold, drift, span, static stiffness etc. Dynamic characteristics - time domain and frequency domain characteristics terms input-output impedance's and meaning of impedance mismatching. Concept of mechanical loading.

Unit II

Response of Instruments: Description of mathematical model for the generalized configuration of a measurement system. Order of the systems, response of zero, first and second order systems of step, ramp and sinusoidal inputs. Transfer function method to study the response of the system.

Errors: Classification of various types of errors and statistical analysis of experimental data.

Unit III

Principles of Transduction and Transducers: Description of various types of transduction principles. Trandducers based on variable resistance, variable inductance, variable capacitance and piezo-electric effects. Displacement transducers - wire wound potentiometers, LVDT, strain gauges, strain gage designation system. Signal conditioners - filters, low, high, band pass and charge amplifiers.

DAS and Signal Analysis: Data acquisition system via computers. The components of Data acquisition system, DAS Hardware, selection criteria for choosing a DAS. Techniques for signal analysis.

Unit IV

Flow Measurement: Flow visualization, shadowgraph; schlieren and interferometric techniques; Pitot static tubes; hot wire anemometers; Laser Doppler velometer; flow measurements using coriolis effect.

Temperature and Heat Flux Measurement: Thermoelectric sensors; electric resistance sensors; thermistors; radiations pyrometers; Temperature measuring problems in flowing fluids, dynamic compensation.

Project Work

Students are required to carry out a project related to the course contents. The topic of the project will be selected in consultation with course coordinator. The project report will be submitted at the end of semester. The evaluation will be done internally by the course coordinator.

Course Outcomes

Students will be able to

- describe the operation of transducers for strain, acceleration, pressure, temperature, and fluid flow measurement.
- select and assemble the components of basic analog and digital data acquisition systems.
- apply theoretical analysis of time-varying signals to selection of signal conditioning components.
- conduct uncertainty analysis and perform basic statistical treatment of experimental data.

Books recommended

- Doeblin E. O., "Measurements System Application and Design", 5th Ed., McGraw Hill, 2004.
- Trietly Harry L., Dekker Marcel, "Transducers in Mechanical and Electronic Design", Ist Ed., CRC Press, 1986.
- Beckwith T. G., Marangoni R. D., and Lienhard J. H., "Mechanical Measurements", 6th Ed., Prentice Hall, 2006.
- Eckert E. R. G. and Goldstein R. J., "Measurements in Heat Transfer", 2nd Ed., Springer, 1986.

Note

			UFACTURING SYSTE	
L T	Р	Internal Marks	External Marks	Credit
4 0	0	30	70	4.0
Course Obj	ectives			
• Learn th	e concepts ar	id technologies associated w	ith Flexible Manufacturing S	System.
Unit I				
Automated F Manufacturin Programming	ng Automat	d Assembly lines. Different ion: Types of Automatio	ation manufacturing cells, types of manufacturing syste: n systems, Logic Control	ms.
Unit II	for the standard stand			in manufacturing EMC
	other manuf		Different types of flexibility ization of FMS, FMS appli	
Unit III				
Control, App	olications of l	NC.	y, Computer Numerical Cont ystem, Sensors, Robot Accur	
Unit IV				
Cellular Mar	nufacturing:	Part classification and coding	g, production flow analysis, N	Machine Cell design, Group
Technology. Material Har	ndling and Id	entification: Material Transp	ort Systems, Storage systems	s, Automatic Identification.
Project Woi	rk			
selected in c	onsultation v		to the course contents. The project report will be submi oordinator.	
Course Out				
Students will	be able to			
• design th	ne basic Flex	ible Manufacturing Systems.		
Books recon	nmended			
edition,F	PHI, 2009.		nufacturing: Materials, Proce	
			nd Applications", PHI, 2008. ems, and Computer - Integrat	
developr	, Jeffrey Smi nent", Spring	-	xible manufacturing systems:	Research and
Note				
and based or marks. Rest	n the entire s of the eight	vllabus (all four units). It wil questions is to be given by	set by the examiner. Questio I contain seven short answer setting two questions from ea r questions by selecting one fi	type questions, each of two ach of the four units of the

			Ν	1E- 738 MEC	HATRONICS		
L	Т	Р	Interna	l Marks	External Mar	rks	Credit
4	0	0	3	0	70		4.0
Co	ourse Obje						
•	micropro Computer		ms. The aim of this	-	-	sensors, actuators, control system Mechanical, Electronics, Instrumen	
	it I				1		11
me	chatronics	approach.				photoelectric transducers, flow transd	
opt						chanical / electrical switches, inputtin	
Un	it II						
		•	tems, pneumatic an cal actuation systems	• •	tems, process co	ontrol valves, rotary actuators, mech	nanical
			nal conditioning, filt esentation systems.	ering digital sig	nal, multiplexers	, data acquisition, digital signal proc	essing,
Un	it III						
	croprocess ntrollers.	ors and M	crocontrollers: Mic	rocomputer stru	icture, microcont	trollers, applications, programmable	e logic
	•	•			•	echanical, electrical, hydraulic and t se, closed loop controllers.	hermal
Un	nit IV	^				•	
and aut DA	d control, comobile, r AS and Sig	designing, j obots. gnal Analys:	possible design solu	tions, detailed system via con	case studies of monotonic computers. The com	sign, system validation, remote mon mechatronic systems used in photo ponents of Data acquisition system s.	copier,
Pr	oject Wor	k					
cor	nsultation w	with course				The topic of the project will be sele- the end of semester. The evaluation	
Co	ourse Outc	omes					
Stu • •	idents wou understar develop ti understar outputs, i	ld be able to nd the basic he mathema nd the key interfacing o	elements of any Mec tical model of any pl	hysical model fro of any physical tuators to the co	om any engineeri device, differen mputers.	t sensors and transducers to measu	ire the
Bo	oks recom	mended					
• • • • • •	Alciatore Shetty, D Mahalik, Bishop, F Anslande Alciatore	, D. G. and and Richar N., "Princip R.H. "Mechar r, D. M. and	rd, A.K., "Mechatror les, Concept and Ap tronics Handbook", l Kampf, C. J., "Mec	roduction to Me nics System Des pplications: Mec CRC Press, 200 hatronics: Mech	ign", PWS Pub. H hatronics", Tata M 2. anical System In		1999.
7	41	•	• • ,•	, 1 , 1	·/ · · · ·	· • • • • • • • • • • • • • • • • • • •	

			ME-765 TR	IBOLOGY	
L	Т	P Inter	nal Marks	External Marks	Credi
3	•	0	30	70	3.
C	ourse Objectiv	es			
•	lubricants an		o give an understa	anding of tribological	phenomena, industrial
	nit I				
Tı	ribology.				brication, economic aspects of
W	ear: Wear defin				ory, laws of rolling friction ve wear, Fatigue wear, impact
_	nit II				
Vi m Th ch	iscosity index easurements, V nermal proper paracteristics, (, Viscosity pres fiscosity of mixture ties of lubricant	sure relationshi s, Oil viscosity o s, Temperature of lubricants,	p, Viscosity-shear classification, Lubrican characteristics of Additive compatibili	sity temperature relationship, rate relationship, Viscosity nt density and specific gravity, lubricants, Other lubricants ity and solubility, Lubricant
		Their Composition es, Lubricant additi		lineral oils, Synthetic	oils, Emulsions and aqueous
U	nit III				
Go be Ro	eneralized Rey earings, Limits eynolds equati	nolds equation, C of hydrodynamic	onverging-diverg lubrication, Hyc ïlms, Porous be	ing wedges, Journal lrodynamic lubricatio earings. Hydrostatic	mic Lubrication; Introduction, bearings, Thermal effects in n with non-Newtonian fluids, Lubrication; Basic concepts,
U	nit IV				
Fι	uture Directio		: Biotribology	etal bearings, Nonmeta -basic concepts; N	
_	ourse Outcom				
<i>T</i> //	to understand to learn abou	d the interdisciplind d the genesis of fric at the principles of d	tion and wear	ology' and its technolo cation regimes, hydrod	gical significance dynamic lubrication and
•	hydrostatic li to learn abou		uch as bio Tribol	ogy and micro/nano T	ribology
B	ooks recomme				
•	Khonsari, M. Wiley (2008)	M. and Booser, E.	R., "Applied Tri	bology: Bearing Desig	ring", McGraw Hill (1968) gn and Lubrication", 2nd Ed,
•	Hall/CRC (20 Bhushan, B.,	010) "Principles and Ap	plications of Tril	pology", 2nd Ed., Wild	Tribology", Chapman and ey (2013) Ed, Butterworth-Heinemann
	(2013)				

• Wyong B., "Tribology: Engineering Applications", NY Research Press (2015)

Note

THIRD SEMESTER

			ME-767 TRIE	BOLOGY LAB			
L	Т	Р	Internal Marks	External Marks	Credit		
0	0	4	30	70	2.0		
Co	urse Obj	ectives					
•	To learn time resu		esting and experimental tec	hniques in Tribology and analy.	sis of real		
Lis	st of Expe						
1.	Tempera speeds.	ture distribu Fo analyze t	tion in the fluid film of h	ng test rig for the measurem ydrodynamic journal bearings ed through data acquisition syst	at different loads and		
2.	hydrodyı	namic journa	al bearings at different loads	test rig for investigating the f and speeds. To analyze the rea e performance characteristics of	l time results obtained		
3.	journal b	earing test		nic journal bearings at different e results obtained through data	•		
4.	tester an	d to measur	e viscosity of lubricants wi	me pressure(EP) behavior of lu th the help of viscometer. To for predicting behavior of lubric	analyze the real time		
5.	speeds of	on wear an		es in sliding contacts under variality alyze the real time results or an acteristics.			
6.	The mod	eling and ar	alysis hydrodynamic/hydro	static bearings using software (A	ARMD).		
	ourse Outo						
Stu •		be able to	nea characteristics of budy	advinanie journal bearings	imantally		
•							
•			nd wear characteristics und				
•	analyze c		he performance characteris	tics of hydrodynamic/hydrostati	ic journal bearings		
No	te						

The internal evaluation will be done by course coordinator. At the end of the semester, viva-voce will be conducted both by internal and external examiners to be appointed by the University.

THIRD SEMESTER

			ME-769 SEMINAR	
L	Т	Р	Internal Marks	Credit
0	0	4	100	2.0
-				

Course Objectives

- To prepare students for the method of literature survey, realization of journal papers outcomes, expose them to the world of research and compilation/review of a research area of current era and prepare them for presentation of literature summary.
- Presentation on advanced topics in the field of Mechanical Engineering.

Course Work

The topic of the seminar will be related to the current research & development in the field of Mechanical Engineering. Each student is required to submit a report on the topic of seminar as per the guidelines decided by the department from time to time.

Course Outcomes

Students will be able to

- *expose themselves to the world of research*
- review of a research area of current era

Note

The internal evaluation will be done by course coordinator. During the semester, each student is required to give a presentation before the class and course coordinator.

THIRD SEMESTER

			ME-771 THESIS (STARTS)	
L	Т	Р	Internal Marks	Credit
0	0	6	100	3.0
Co	ourse Obje	ectives		
•	To identi	ify research issue	e/problem on advance engineering topics related to Mechanical	
	Engineer			
•	To gain l	knowledge on the	e research problems identified through extensive literature survey	у.
•	To under	rstand the tools r	required to carry out research work.	
	ourse Work			
Th	e Thesis w	vork should be of	f research nature only. During the third semester, following must	be
ca	rried out by	y the student:		
	• Liter	ature Survey		
	• Prob	lem Formulation	n	
Th	esis work	will be started d	luring the third semester and must be continued in fourth semester	r. Around
35	% of the T	hesis work shou	ald be completed in this semester. The remaining 65% work will be	be carried
ou	t in the fou	urth semester.		
Co	ourse Outo	comes		
Sti	idents will	be able to:		
•	gain kno	wledge on the re	esearch problems identified through extensive literature survey.	
•	understa	nd professional	& ethical research issues.	
•	present e	effectively the res	search topic through synopsis presentation.	
No	ote			
Th	e internal	evaluation wil	ll be through synopsis presentation and viva-voice before th	ie faculty
	•	-	Each student is required to submit a detailed synopsis report of	about the
wc	ork done or	n topic of Thesis.	•	

PROGRAMME ELECTIVE - II

ME-731 OPTIMAL DESIGN OF THERMAL SYSTEMS

L T	Р	Internal Marka	Extornal Marka	Cnodit
L T 4 0	<u>Р</u> 0	Internal Marks 30	External Marks 70	Credit 4.0
4 0 Course Objec	*	30	70	4.0
• To know a	and underst	and the different thermal simulation, and economic	systems and to get familiar with th	eir design, thermal
• To unders	tand the op		nethods in the analysis and design	of various types of
Unit I		1		
and optimum design, steps i	systems, E n the design	asic considerations in de process, computer aided o	n, design as part of engineering und sign: formulation of the design p lesign. of money as a function of time, s	roblem, conceptual
Unit II				
Modeling of t mathematical		ems: Types of models, mo	deling of heat exchangers, evaporat	ors and condensers,
Equation fittir analysis.	g: Method	of least squares and the art	of equation fitting, physical modeli	ng and dimensional
Unit III				
Numerical mossimulation.	odeling and	simulation: Numerical r	nodeling, system simulation, meth	nods for numerical
		rmal systems: Initial designal considerations for large	n, design strategies, design of system practical systems.	tems from different
Unit IV				
design, mathe optimal design	ematical rep	presentation and statemen	imization, basic concepts, practical t of the optimization problem, p methods, and geometric programm	practical aspects in
		igrange multipliers, search	methods, and geometric programm	ing.
Project wor				
selected in co	onsultation		to the course contents. The topic of The project report will be subm he course coordinator.	
Course Outco	omes			
Students will l	e able to			
			l its role in many like processes	and to develop the
		rious thermal problems.		
-			ts for a particular application base	ed upon its thermal
		ze and optimize the thermo	al problems.	
Books recom			c c rd c c c c	
			AcGraw-Hill, 3 rd ed. 2014.	
	•	1	l Systems", CRC Press, 2 nd ed. 200 rmal Design and Optimization", Jo	
• N. Suryan	-	-	nulation of Thermal System", McG n of Thermal Systems", Cambridg	
2009. • C. Balaji,	"Essentials	of thermal system design a	and optimization", CRC Press, 2011 ms", Cengage learning, 3 rd ed., 201	

• William S. Janna, "Design of fluid thermal systems", Cengage learning, 3rd ed., 2011.

Note

			ME-733 COMPUTAT	IONAL FLUID DYNAMICS	
L	Т	Р	Internal Marks	External Marks	Credit
4	0	0	30	70	4.0
Co	urse Obj	ectives			
•			wledge of governing equation	ons for fluid flow.	
•			0 0 0 1	o solve the partial differential eq	uation.
•			flow problem using CFD ar	1 00 1	
Un	it I	<u> </u>			
-	-	History of	of CFD. Motivation and role of	of computational fluid dynamics, C	oncept of modeling and
				s. Recent Advances in Computation	
				n, Models of flow, The substantial	
of	velocity, C	Continuity	equation, Momentum equatior	n, Energy equation, Physical bounda	ry conditions.
Un	it II				
				l behavior of parabolic, Elliptic an	d hyperbolic equations,
		d initial co			
				troduction to Finite Difference, D	iscretization, Difference
		.	Implicit approaches, errors an	• •	
				ion, General transformation of e rid, Modern developments in grid	
	ume mesh		nd, Emplie Ond, adaptive g	ind, Moderni developments in grid	generation and Philite
	it III	1.			
		id dvnami	cs CFD Techniques. Introduct	ion, Lax Wendroff Techniques, Ma	c Cormack's Technique
			ADI Technique		e connuer s'reennque,
		-		ncompressible Viscous flow, SIMPI	LE Algorithm
	it IV		* * *	*	
Nu	merical S	olution to	Heat Conduction Problems:		
				imensional Heat Conduction Transf	fer through a Pin-fin (ii)
			U	mensional Transient Heat Conduction	
				oblems eg. Incompressible Couette	e Flow using (a) Crank
			Pressure correction Technique		
			y available tools for CFD and	alysis, Steps to solve a problem u	sing any software, grid
	lependenc				
	oject wo				
		-	2 1 0	d to the course contents. The topi	0 1 0
			i with course coordinator. The internally by the course coord	project report will be submitted at	the end of semester. The
	urse Out		internativ by the course coord		
		be able to			
			nowledge of various types of fi	uid flow governing equations	
			l fluid flow phenomena of any		
	•			eering systems using computational	fluid dynamics
Bo	-	mmended	weage to design of the Digit	cering systems using computational	juua aynamies.
			Computational Fluid Dynamics	: The Basics with Applications.", M	cGraw-Hill Inc. New
Ľ	York, 19		pumilonui i iuiu Dynuillios	. The Dubles with Apphounduls. , W	
•			nnehill, J. C., & Anderson. D.	"Computational fluid mechanics an	d heat transfer". CRC
	Press, 20		, ,,,		2
•			erical heat transfer and fluid fl	ow", CRC Press, 1980.	
•				ambridge university press, 2010.	
•				ow and heat transfer". Tata McGraw	-Hill Publishing
	Company	y Limited,	1998.		-
•	Jaluria, Y	Y., " Com	putational heat transfer", CRC	Press, 2002.	

• Wendt, J. (Ed.)., "Computational fluid dynamics: an introduction", Springer Science & Business Media, 2008.

Note

			ME-735 ADVANCED	THERMODYNAMICS	
L	Т	Р	Internal Marks	External Marks	Credit
4	0	0	30	70	4.0
Co	ourse Obj	ectives			
•				heory of energy, its quality and se	
		-		wledge on the analysis of simple	compressible and
		nponent sy			
•				odynamic property relations, ap	plications, power,
		ation cycle	s and use of thermodynamics is	n daily life.	
	nit I	. 1	1 . 1		
		•		lynamics: Macroscopic and micros	
<u> </u>	· ·			eat, energy, and characteristics of a	0
			2 I	ocess, Caratheodory's formulation	, entropy, entropy
	nit II	Inteversio	le process, corollaries of secon	a law, and applications.	
		inter la	a managa ihla anatama and a	then simple systems. Desig and	
				other simple systems: Basic gov e equations, generalized compress	
	plications.		ons, equation of state, cubic	equations, generalized compress	sidility cliait, allu
			tems exergy and irreversibil	ity: Conservation of mass and e	nergy steady and
				l closed systems, exergy analysis of	
			cing maximum power.	erosed systems, energy unarysis of	i simple processes,
	nit III	<u>, r</u>			
		nent syste	ms: Fundamental property rel	ationships, partial molar properties	s, equation of state
			potential, and fugacity.		, equation of state
				mixtures: Conditions for equilibriu	um, analysis phase
				is, second law analysis, work poter	
		emical exer			
Ur	nit IV				
Po	wer and re	efrigeratio	n cycles: Periodic heat engines	, vapor power cycles, and gas power	er cycles, modified
vaj	por compi	ression cyc	cles, actual vapor compression	cycles, gas refrigeration and absor	rption refrigeration
	cles.				
				mics in daily life: Basic postulat	tes, thermoelectric
ph	enomenor	n, thermal	diffusion, the first and second l	aw in daily life.	
Pr	oject wo	rk			
				to the course contents. The topic of	
				The project report will be submit	tted at the end of
			on will be done internally by th	e course coordinator.	
	ourse Out				
Stı		l be able to			
•				l exergy analysis, behavior of rea	l and ideal gases,
			operty relations and reactive s		
•	•		amic processes in daily routin	e life and in various industries.	
Bo		nmended			ot
•				eralized approach", Elsevier Ltd., 1	
•				cs", John Wiley and Sons, 3 rd ed. 20	
•				dynamics", Prentice Hall, 4 th ed. 19	96.
•				es", Academic Press, 1 st ed. 2010.	
•		-		nics: An engineering approach",	TMH Publishing
1	-	y Ltd., 200		· · · · · · · · · ·	от т.т.е
•	U.J. Bev	an & B.J.	Juliana, "Chemical thermodyn	namics: principles and applications'	, Elsevier Ltd., 1 st

- O.J. Bevan & B.J. Juliana, "Chemical thermodynamics: principles and applications", Elsevier Ltd., 1st ed. 2005.
- M. S. Moran & H. N. Shapiro, "Fundamentals of Engineering thermodynamics", John Wiley & Sons,

L	Т	Р	Internal Marks	External Marks	Credit				
4	0	0	30	70	4.0				
Cou	Course Objectives								

• To study and understand the role of different types of heat exchangers, their design, functioning and related concepts.

Unit I

Classification of heat exchangers, temperature distribution for parallel flow, counter flow, cross flow heat exchangers, evaporators and condensers, concept of LMTD and overall heat transfer coefficient.

Fouling of heat exchangers, NTU method for gauging exchanger performance, LMTD for parallel, counter and cross flow heat exchangers, effectiveness for parallel and counter flow exchangers.

Unit II

Important design considerations: material selection and optimization of heat exchangers, analysis of regenerative heat exchangers. Vibrations induced by flow, International Standards for heat exchangers.

Compact heat exchangers, thermal and mechanical design of: Shell & tube heat exchangers, Double pipe, Extended surface, Condensers & evaporators.

Unit III

Heat Exchanger Pressure Drop Analysis, Importance of Pressure Drop, Fluid Pumping Devices, Major Contributions to the Heat Exchanger Pressure Drop, Assumptions for Pressure Drop Analysis. Extended Surface Heat Exchanger Pressure Drop. Regenerator Pressure Drop.

Heat transfer augmentation in heat exchangers using active and passive techniques.

Unit IV

Selection of Heat Exchangers and their Components on the basis of operating conditions, General Selection guidelines for major exchanger types (shell and tube type, Plate heat exchanger, Extended surface exchanger etc.), Modeling of heat exchanger based on first law of thermodynamics

Energy, Exergy, and Cost Balances in the Analysis and Optimization of Heat Exchangers, Performance Evaluation Criteria Based on the Second Law of Thermodynamics

Applications of heat exchangers in various industries (automobile, electronic, process, chemical etc.)

Project work

Students are required to carry out a project related to the course contents. The topic of the project will be selected in consultation with course coordinator. The project report will be submitted at the end of semester. The evaluation will be done internally by the course coordinator.

Course Outcomes

Students will be able to

- aquire adequate knowledge about working and design concepts of heat exchanger.
- analyze the heat transfer & pressure drop analysis.

• aquire adequate knowledge about heat transfer augmentation Techniques used in heat exchangers

Books recommended

- Shah, R. K., & Sekulic, D. P. "Fundamentals of heat exchanger design" John Wiley & Sons, 2003.
- Kakaç, S., Shah, R. K., & Aung, W. (Eds.)., "Handbook of single-phase convective heat transfer (pp. 7-1)", New York et al., Wiley. 1987.
- Fraas, A. P., "Heat exchanger design", John Wiley & Sons, 1989.
- Bejan, A., "Second law analysis in heat transfer", Energy, 5(8), 720-732, 1980.
- Webb, R. L., & Kim, N. H., "Principles of enhanced heat transfer", Taylor Francis: New York, NY, USA 1994.
- Kakac, S., Liu, H., & Pramuanjaroenkij, A., "Heat exchangers: selection, rating, and thermal design", CRC press, 2012.
- Kreith, F., Manglik, R., & Bohn, M., "Principles of heat transfer", Cengage learning, 2010.
- Hewitt, G. F., Shires, G. L., & Bott, T. R., "Process heat transfer (Vol. 113)". Boca Raton, FL: CRC press, 1994.
- Bejan, A., "Convection heat transfer", John wiley & sons, 2013.

Note

FOURTH SEMESTER

			ME-772 THESIS				
L	Т	Р	External Marks	Credit			
0	0	18	100	9.0			
Cou	Course Objectives						
• 4	• Ability to bring ideas into practice through simulation of analysis of research topic.						

- Ability to identify specific industrial problems in the form of research objectives.
- Ability to propose a novel idea/modified technique/new interpretation after analyzing the existing research work.

Course Work

Around 35% of the Thesis work is required to be completed in third semester. The remaining 65% work will be carried out in this semester. Each student is required to submit a detailed Thesis report about the work done (III Sem + IV Sem) on the topic of Thesis.

One paper in national/international conference/journal of repute is required before submission of thesis. Research work should be carried out at GJUS&THisar. However, candidate may visit research labs/institutions with the due permission of Chairperson on recommendation of supervisor concerned.

Course Outcomes

Students will be able to

- contribute in the Research and Development
- upgrade knowledge of scientific community and society in general through their research.

Note

Thesis evaluation and viva-voice will be carried out by the internal and external examiners appointed by the University.